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Abstract

The Mie-Grüneisen equation of state (EOS) is frequently used in hy-
dro simulations to model solids at high pressure (up to a few Mb).
It is an incomplete EOS characterized by a Grüneisen coefficient,
Γ = −V (∂eP )V , that is a function of only V . Expressions are de-
rived for isentropes and isotherms. This enables the extension to a
complete EOS. Thermodynamic consistency requires that the specific
heat is a function of a single scaled-temperature. A complete exten-
sion is uniquely determined by the temperature dependence of the
specific heat at a fixed reference density. In addition we show that if
the domain of the EOS extends to T = 0 and the specific heat van-
ishes on the zero isotherm then Γ a function of only V is equivalent
to a specific heat with a single temperature scale. If the EOS domain
does not include the zero isotherm, then a specific heat with a single
temperature scale leads to a generalization of the Mie-Grüneisen EOS
in which the pressure is linear in both the specific energy and the tem-
perature. This corresponds to the limiting case of two temperature
scales with one of the scales in the high temperature limit. Such an
EOS has previously been used to model liquid nitromethane.
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Notation

Thermodynamic quantities are denoted as follows: e is the specific internal
energy, V is the specific volume, P is the pressure, T is the temperature, and
S is the specific entropy. The specific heat at constant volume and Grüneisen
coefficient are denoted by CV = (∂T e)V and Γ = V (∂eP )V , respectively. In
addition, a summary of standard thermodynamic identities can be found, for
example, in [Menikoff & Plohr, 1989; App. A].

1 Mie-Grüneisen EOS

In the first subsection, we specify the pressure, P (V, e), for what is commonly
known as the Mie-Grüneisen EOS. This is an incomplete EOS. In the second
subsection, the general theory is presented for extending an incomplete EOS
to a complete EOS. This involves determining a temperature T (V, e) and
an entropy S(V, e), which are thermodynamically consistent; i.e., satisfy the
differential relation

de = −P dV + T dS . (1)

In the third section, the theory is applied to extend the incomplete Mie-
Grüneisen EOS to a complete EOS. The extension is not unique. There is
a degree of freedom associated with the specific heat. In this update from
2012 version, the high temperature limit is also discused.

1.1 Incomplete form

The incomplete Mie-Grüneisen EOS is widely used in hydro simulations to
model solids for pressures up to a few Mb. It has the form

P (V, e) = Pref(V ) +
Γ(V )

V

(
e− eref(V )

)
. (2)

The original motivation of this form utilized the zero temperature isotherm
(cold curve) as the reference curve and identified the second term on the right
side with the thermal contribution to the pressure. Hence, it is assumed that
Γ(V ) > 0.
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A key property of the Mie-Grüneisn form for the pressure is that the
Grüneisen coefficient is assumed to be a function of only V . As a consequence,
the pressure is linear in e, and any curve parameterized by V ,

Pref(V ) = P (V, eref(V )) ,

can be chosen as a reference curve. Common choices are a shock locus, an
isentrope (constant entropy), or an isotherm (constant temperature). For a
shock locus or an isentrope through the initial state (V0, e0) with pressure P0

and temperature T0, the reference energy can be expressed in terms of the
reference pressure;

eh(V ) = e0 + 1
2
(Ph(V ) + P0)(V0 − V ) , (3a)

eS(V ) = e0 −
∫ V

V0

dV ′ PS(V ′) , (3b)

for a reference Hugoniot or isentrope, respectively.

In order for the reference energy of an isotherm to be thermodynamically
consistent, knowledge of the specific heat is needed. From the thermody-
namic identity (∂V e)T = −(P − Γ CV T/V ),

eT (V ) = e0 −
∫ V

V0

dV ′
[
PT (V ′)− Γ(V ′)

V ′ CV (V ′, T0) T0

]
.

Later in this subsection, we determine a scaling property of the specific heat,
Eq. (15) below. The energy on the reference isotherm can then be expressed
as

eT (V ) = e0 −
∫ V

V0

dV ′
[
PT (V ′)− Γ(V ′)

V ′ CV

(
V0, T0/φ(V ′)

)
T0

]
. (4)

where φ(V ) is given by Eq. (7) below. Thus, only the temperature depen-
dence of the specific heat at V0 is needed.

Isentropes play an important role in the theory. The energy on an isen-
trope through the state (V0, e1), which we label S1, is determined by the
ODE

(d/dV )eS(V ) = −P (V, e) , (5)

with the initial condition eS1(V0) = e1. The value of S1 is discussed in the
next subsection. Substituting Eq. (2) yields

d

dV
eS(V ) +

Γ(V )

V
eS(V ) = −

[
Pref(V )− Γ(V )

V
eref(V )

]
. (6)
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With the integrating factor

φ(V ) = exp
[
−

∫ V

V0

dV ′ Γ(V ′)

V ′

]
, (7)

the ODE can be written as

d

dV

[
eS(V )

φ(V )

]
= −

Pref(V )− Γ(V )
V

eref(V )

φ(V )
. (8)

The solution can be expressed as

eS1(V )− eS0(V ) = φ(V ) (e1 − e0) , (9)

where the energy on the isentrope S0 through the initial state (V0, e0) is given
by

eS0(V ) = φ(V )
[
e0 −

∫ V

V0

dV ′Pref(V
′)− Γ(V ′)

V ′ eref(V
′)

φ(V ′)

]
.

Substituting Γ/V = −(dφ/dV )/φ and integrating by parts, the energy on
the initial isentrope can be re-expressed as

eS0(V ) = eref(V )− φ(V )
∫ V

V0

dV ′
[
Pref(V

′) + (deref/dV )(V ′)

φ(V ′)

]
. (10)

When the reference curve is an isentrope, the integral vanishes.

The pressure on the isentrope S1 is then determined by

PS1(V ) = PS0(V ) +
Γ(V )

V
φ(V ) (e1 − e0) , (11)

where

PS0(V ) = Pref(V ) +
Γ(V )

V

[
eS0(V )− eref(V )

]
(12)

is the pressure on the isentrope through the initial state. Since Γ > 0, the
projection of isentropes onto the (V, P )-plane and the (V, e)-plane, do not
cross.

We note in passing that a convex EOS is required for all physical shock
waves to be entropy increasing and compressive. This means that all isen-
tropes PS(V ) are convex. It follows from Eq. (11) that Γ(V )

V
φ(V ) must be

convex; i.e., the derivative with respect to V is negative and the second
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derivative is positive. This places some restrictions on the form for Γ(V ). A
simple sufficient condition is that Γ(V )/V is monotonically increasing with
decreasing V . The common choices Γ = constant and Γ/V = constant sat-
isfy the requirement for convexity. Also, PS0(V ) needs to be convex. This
may place additional restrictions on Γ(V ), depending on the reference curve.

Using thermodynamic identities, an alternate expression for the Grüneisen
coefficient is

Γ = −(V/T ) (∂V T )S . (13)

Consequently, the temperature on an isentrope is given by

TS(V ) = φ(V ) TS(V0) . (14)

Since Γ(V ) > 0, φ(V ) > 0 and monotonically increasing with decreasing V .
Hence, the temperature on an isentrope increases with decreasing V . More-
over, isotherms do not cross in the (V, T )-plane.

The fact that TS(V ) and eS(V )−eS0(V ) both scale by the same factor, for
all isentropes, is a consequence of the Grünesien coefficient being a function
of only V . It implies that the specific heat satisfies the relation

CV

(
V, T

)
= (∂T e)V =

(∂Se)V

(∂ST )V

= CV

(
V0, T/φ(V )

)
. (15)

Typically, CV (V0, T ) is monotonically increasing with increasing tempera-
ture. The scaling then implies

(∂V CV )T = − dφ/dV

φ2(V )

(
∂T CV

)
V

(
V0, T/φ(V )

)

=
Γ(V )

V φ(V )

(
∂T CV

)
V

(
V0, T/φ(V )

)
> 0 . (16)

The scaling of the specific heat will be used in a later subsection to construct
a thermodynamically consistent complete EOS.

1.2 Extending to complete EOS

To obtain a complete EOS, the temperature T (V, e) and entropy S(V, e) need
to be specified consistent with the thermodynamic relation, Eq. (1). This can
be re-expressed as

dS = (1/T ) de + (P/T ) dV . (17)
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In order for S to be a perfect differential, the cross derivatives must be equal

∂V (1/T )e = ∂e(P/T )V . (18)

This can be re-expressed as a hyperbolic PDE for the scalar variable T

(∂V − P∂e) T = −(T/V ) Γ . (19)

The characteristic curves in the (V, e)-plane,

des/dV = −P (V, es) , (20)

are the same as the isentropes. On the characteristic curve, the temperature
satisfies

dT

dV
= − Γ

V
T , (21)

which is the same as the thermodynamic identity, Eq. (13). Hence on the
characteristic curve es(V ), the temperature is given by

Ts(V ) = Ts(V0) exp

[
−

∫ V

V0

dV ′ Γ
(
V ′, es(V

′)
)

V ′

]
. (22)

This analysis leads to a general procedure for extending an incomplete
EOS to a complete EOS. First, one selects a curve in the (V, e)-plane that
crosses every isentrope exactly once. For illustrative purposes, we use the line
V = V0. On the selected curve, the specific heat CV may be arbitrarily cho-
sen. The temperature and entropy on the selected curve are determined by
integrating ODEs from the thermodynamic relations. For example, T (V0, e)
and S(V0, e) are determined by

d

de

T

S

 =

1/CV (V0, T )

1/T

 , (23)

with the initial conditions T (V0, e0) = T0 and S(V0, e0) = S0. Then given any
point (V, e), the isentrope ODE (20) can be integrated to determine es(V0).
Hence, from Eq. (23) we obtain T (V0, es) and S(V0, es). Using T (V0, es),
Eq. (22) determines T (V, e). Moreover, S(V, e) = S(V0, es). Thus, T and S
are defined for all (V, e), and are thermodynamically consistent.

6



1.3 Complete form

For the incomplete Mie-Grüneisen EOS, the extension to a complete EOS
can be greatly simplified because the isentropes are determined explicitly by
Eqs. (7, 9, 14). A key point of the general theory is that all extensions are
defined by specifying the specific heat at a fixed V0. Conversely, specifying
CV (V0, T ) uniquely determines the extension.

As previously noted, the specific heat satisfies a simple scaling relation,
Eq. (15). This can be used to complete the Mie-Grünesen EOS as follows.
First, determine the integrating factor φ(V ) from Eq. (7) and the energy on
the initial isentrope eS0(V ) from Eq. (10). Then the temperature and entropy
at the state (V, e) are determined by applying the ODE (23) at fixed V ; i.e.,
integrate from eS0(V ) to e the ODE

d

de

T

S

 =

1/CV

(
V0, T/φ(V )

)
1/T

 , (24)

starting with the initial conditions T = T0 φ(V ) and S = S0.

A frequently used special case is for CV = constant. The integral can
then be done explicitly. The result is

T (V, e) = T0 φ(V ) +
[
e− eS0(V )

]
/CV , (25a)

S(V, e) = S0 + CV ln

[
1 +

e− eS0(V )

T0 CV φ(V )

]
. (25b)

Physically, CV = 0 at T = 0. Consequently, this special case of an EOS with
constant CV should not be used at low temperature.

2 Free energy

It is instructive to express the complete Mie-Grüneisen EOS in terms of the
Helmholtz free energy. The free energy is defined by

F (V, T ) = e− T S . (26)
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The thermodynamic relation, Eq. (1), can be re-expressed as

dF = −P dV − S dT . (27)

We aim to construct F from the pressure on an isotherm, the specific heat
and the Grüneisen coefficient.

Since entropy satisfies the relation

dS =
Γ CV

V
dV +

CV

T
dT , (28)

it can be expressed as

S(V, T ) = S0 +
∫ V

V0

dV ′ Γ(V ′, T0) CV (V ′, T0)

V ′ +
∫ T

T0

dT ′ CV (V, T ′)

T ′ . (29)

Then from Eq. (27), the free energy can be written as

F (V, T ) = e0 − T0 S0 −
∫ V

V0

dV ′ P (V ′, T0)

−
∫ T

T0

dT ′
{

S0 +
∫ V

V0

dV ′ Γ(V ′, T0) CV (V ′, T0)

V ′ +
∫ T ′

T0

dT ′′ CV (V, T ′′)

T ′′

}
.

This can be re-expressed as

F (V, T ) = e0 − T S0 −
∫ V

V0

dV ′
[
P (V ′, T0) +

Γ(V ′, T0)

V ′ CV (V ′, T0) (T − T0)
]

−
∫ T

T0

dT ′

T ′ (T − T ′) CV (V, T ′) . (30)

We note that the integrals require CV (V, T ) but only Γ(V, T0). This is because
the specific heat and the Grüneisen coefficient are not fully independent, as
is shown next.

Evaluating
∂V (∂T ∂T F ) = ∂T (∂T ∂V F )

leads to the compatibility condition [Sheffield & Duvall, 1983]

V [∂V CV ]T = T [∂T (Γ CV )]V . (31)
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Integrating with respect to T yields

Γ(V, T ) CV (V, T ) = Γ(V, T0) CV (V, T0) + V
∂

∂V

∫ T

T0

dT ′

T ′ CV (V, T ′) . (32)

Hence Γ(V, T ) is determined by Γ(V, T0) and CV (V, T ).

If the domain extends to T0 = 0, which requires, as is physical, that the
specific heat vanishes at T = 0, then Γ is determined by CV . Consequently
with T0 = 0, Eq. (30) for the free energy simplifies to

F (V, T ) = e0 −
∫ V

V0

dV ′ Pc(V
′)−

∫ T

0

dT ′

T ′ (T − T ′) CV (V, T ′) , (33)

where Pc is the cold curve, i.e., T = 0 isotherm. It follows from Eqs. (26, 27)
that the entropy, energy and pressure are given by

S(V, T ) = −∂T F =
∫ T

0

dT ′

T ′ CV (V, T ′) , (34)

e(V, T ) = F + T S = e0 −
∫ V

V0

dV ′ Pc(V
′) +

∫ T

0
dT ′ CV (V, T ′) , (35)

P (V, T ) = −∂V F = Pc(V ) +
∫ T

0

dT ′

T ′ (T − T ′) ∂V CV (V, T ′) . (36)

Substituting the compatibility relation, Eq. (31), and integrating by parts,
the pressure can be expressed as

P (V, T ) = Pc(V ) + V −1
∫ T

0
dT ′ Γ(V, T ′) CV (V, T ′) . (37)

This is consistent with the thermodynamic identity (∂T P )V = Γ CV /V .

To summarize, F is determined by a reference temperature T0 and three
functions; P (V, T0), Γ(V, T0) and CV (V, T ). Due to the compatibility condi-
tion, Eq. (31), only Γ(V, T0) and not Γ(V, T ) can be specified. Alternatively,
if the domain extends to T0 = 0 and CV (V, 0) = 0 then the cold curve Pc(V )
and CV (V, T ) are sufficient to determine F .

2.1 Mie-Grüneisen EOS

For the Mie-Grüneisen EOS, the compatibility condition, Eq. (31), reduces
to a hyperbolic PDE for the scalar variable CV ;

V ∂V CV − Γ(V ) T ∂T CV = 0 . (38)
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The characteristic curve in the (V, T )-plane is determined by the ODE

dT

dV
= − Γ(V )

V
T .

Therefore, the characteristic curve through the point (V0, T0) is T = T0 φ(V ),
where φ(V ) is given by Eq. (7), and corresponds to an isentrope. On the
characteristic curve, CV is a constant. Hence, the specific heat has the form
derived in the previous section, Eq. (15). Moreover, the specific heat is a
function of only entropy.

The free energy for the Mie-Grüneisen EOS can be written as

F (V, T ) = e0−
∫ V

V0

dV ′ Pc(V
′)−θ(V )

∫ T/θ(V )

0

dT̃

T̃

[
T/θ(V )−T̃

]
C̃v(T̃ ) , (39a)

where

θ(V ) = θ(V0) exp
[
−

∫ V

V0

dV ′ Γ(V ′)/V ′
]

, (39b)

C̃v(T̃ ) = CV

(
V, θ(V ) T̃

)
. (39c)

The function θ(V ) can be thought of as a temperature, and T̃ = T/θ(V )
as dimensionless. In effect, θ(V ) is a temperature scale and plays an analo-
gous role in scaling the specific heat as the Debye temperature used in the
Debye model for the specific heat of a solid. The Debye model provides an
illustrative example for the form of the scaled specific heat. This is shown in
figure 1; see [Menikoff, 2007] and references therein for details. An important
property is that CV asymptopes to a constant at high temperature.

We note that φ(V ) = θ(V )/θ(V0), and CV (V0, T ) = CV (V, φ(V ) T ). Since
the specific heat scales with the ratio of θ, we may take θ(V0) = 1K. It
serves to keep track of the dimensions. To summarize, with T0 = 0 as the
reference temperature, a complete Mie-Grüneisen EOS is determined by three
functions; Pc(V ), Γ(V ) and C̃v(T̃ ) = CV

(
V0, θ(V0) T̃

)
.
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Figure 1: Scaled specific heat for Debye model; R is the gas constant and θ is the
Debye temperature.

The entropy, energy and pressure can readily be obtained:

S(V, T ) = −∂T F =
∫ T/θ(V )

0

dT̃

T̃
C̃v(T̃ ) , (40)

e(V, T ) = F + T S = e0 −
∫ V

V0

dV ′ Pc(V
′) + θ(V )

∫ T/θ(V )

0
dT̃ C̃v(T̃ ) , (41)

P (V, T ) = −∂V F = Pc(V )− dθ

dV

∫ T/θ(V )

0
dT̃ C̃v(T̃ ) . (42)

Substituting Eqs. (39b, 41) into Eq. (42) yields

P (V, T ) = Pc(V ) +
Γ(V )

V

[
e(V, T )− e(V, 0)

]
, (43)

which is the Mie-Grüneisen form for the pressure with the T = 0 isotherm
as the reference. Moreover, from Eq. (40), the entropy is a function of the
scaled-temperature T/θ(V ).

The last term in Eq. (41) can be thought of as the thermal energy. It
factors into the product of two functions; θ(V ) and a function of T/θ(V ).
Since entropy is monotonically increasing function of T/θ(V ), the function
can be inverted to obtain the scaled-temperature as a function of entropy.
Consequently, the energy as a function of V and S can be written in the form

ẽ(V, S) = e0 −
∫ V

V0

dV ′ Pc(V
′) + θ(V )χ(S) , (44)
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where χ(S) =
∫ T/θ(V )
0 dT̃ C̃v(T̃ ). In fact, Grinfeld [2011] has derived the

complete Mie-Grüneisen EOS utilizing ẽ(V, S) as a thermodynamic potenial.
He showed that Γ a function of only V implies the energy has the form given
in Eq. (44). We note that our analysis began by computing the difference
in energy of two isentropes, Eq. (9). This follows directly from the form of
ẽ(V, S).

Finally, in passing, we note that the differential thermodynamic relation
for the entropy, Eq. (28), implies(

∂V −
T Γ

V
∂T

)
∂T F = 0 . (45)

When Γ is a function of only V , the solution to the PDE has the form given
in Eq. (39a). This could be used to provide an alternate derivation of the
complete Mie-Grüneisen EOS.

2.2 High temperature limit

With a single temperature-scale, the specific heat can be expressed as

CV (V, T ) = C̃v

(
T/[θ(V0)φ(V )]

)
. (46)

The limit θ(V0) → 0 corresponds to the high temperature limit in which
CV (V, T ) → constant. The free energy can then be reduced to a simpler
form.

To avoid difficulties with the specific heat vanishing on the cold curve, we
start with Eq. (30), which uses T0 as the reference temperature. Substituting
the scaled specific heat, and then taking the limit CV (V, T )→ CV , yields

F (V, T ) = e0 − T S0 −
∫ V

V0

dV ′ P (V ′, T0)

− CV (T − T0)
∫ V

V0

dV ′ Γ(V ′)

V ′ − CV

∫ T

T0

dT ′

T ′ (T − T ′)

= e0 − T S0 −
∫ V

V0

dV ′ P (V ′, T0)

+ CV (T − T0)
[
1−

∫ V

V0

dV ′ Γ(V ′)

V ′

]
− CV T ln(T/T0)

(47)
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The entropy, energy and pressure can then be expressed as

S(V, T ) = S0 + Cv

[
ln(T/T0) +

∫ V

V0

dV ′ Γ(V ′)

V ′

]
, (48a)

e(V, T ) = e(V, T0) + CV (T − T0) , (48b)

P (V, T ) = P (V, T0) +
Γ(V )

V
CV (T − T0) , (48c)

where

e(V, T0) = e0 −
∫ V

V0

dV ′ P (V ′, T0) + CV T0

∫ V

V0

dV ′ Γ(V ′)

V ′ . (48d)

We note that even though θ(V ) = θ(V0)φ(V ) → 0, knowledge of φ(V ) is
retained in that it determines Γ(V ).

This form of Mie-Grüneisen EOS is known as the Hayes EOS; see [Menikoff,
2007]. It is applicable to simple metals (atomic crystals) for T above the
acoustic phonon (lattice vibrations) Debye temperature, but low enough that
the electron contribution to the specific heat is not significant. In this case,
the high temperature limit of the specific heat corresponds to the classical
limit, i.e., law of Dulong and Petit; CV = 3 R/AtWt, where R is the gas
constant and AtWt is the atomic weight.

3 Single temperature scale EOS

For the Mie-Grüneisen EOS we have seen that when Γ is a function of only V ,
the specific heat and entropy are functions of a single scaled-temperature
variable. It is natural to ask whether the converse is true: Is Γ a function of
only V if either S or CV is a function of a single scaled-temperature variable.
We next show that the converse is true for S but not necessarily for CV .

Suppose that S(V, T ) = S̃(T̃ ) where T̃ = T/θ(V ). Moreover, we assume
that S̃(T̃ ) is a monotonic function and hence is invertible; i.e., T̃ is a function
of S. The specific heat can be expressed as

CV (V, T ) = T (∂T S)V = T̃dS̃/dT̃ . (49)

Hence, the specific heat is a function of only S.
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An alternate form of the compatibility condition, Eq. (31), is

C 2
V (∂SΓ)V = V (∂V CV )S . (50)

It can be proved [Davis, 2000] by evaluating

∂V (∂S∂S e) = ∂S(∂V ∂S e) . (51)

It follows that if CV is a function of only S then Γ is a function of only V .
Therefore, if S is a function of a single scaled-temperature variable then Γ is
a function of only V .

Next we assume that the specific heat scales with a single temperature,

CV (V, T ) = C̃v

(
T/θ(V )

)
. (52)

This implies
∂V CV = −(θ′/θ) T ∂T CV (53)

where θ′ = (d/dV )θ . Substituting into the compatibility condition, Eq. (31).
leads to the equation

− [V θ′/θ]∂T CV = ∂T (Γ CV ) . (54)

Integrating in T then gives[
Γ(V, T )− g(V )

]
CV (V, T ) =

[
Γ(V, T0)− g(V )

]
CV (V, T0) , (55)

where g(V ) = −V θ′(V )/θ(V ). If the domain extended down to T0 = 0 and
C̃v(0) = 0, then Γ = g(V ) and we would obtain a Mie-Grüneisen EOS.

The cold curve is in the solid phase. For a liquid phase, the EOS model
domain would not include the zero isotherm. In fact, specific heat scaling
has been applied to liquid nitromethane by Winey et al. [2000]. In this case,

Γ(V, T ) = g(V ) +
[
Γ(V, T0)− g(V )

] C̃v(T0/θ(V ))

C̃v(T/θ(V ))
. (56)

Hence, Γ is a function of both V and T . Typically, CV → constant for
large T . In this case Γ would become a function of only V at high tempera-
tures. However, the limiting Γ would not be g(V ). Hence, the Mie-Grüneisen
relation between Γ and the temperature scale θ(V ) would not hold.
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The free energy for the scaled-temperature model is

F (V, T ) = e0 − T S0 −
∫ V

V0

dV ′
[
P (V ′, T0) +

Γ(V ′, T0)

V ′ CV (V ′, T0) (T − T0)
]

− θ(V )
∫ T/θ(V )

T0/θ(V )

dT̃

T̃

[
T/θ(V )− T̃

]
C̃v(T̃ ) , (57)

The entropy, energy and pressure are then given by

S(V, T ) = S(V, T0) +
∫ T/θ(V )

T0/θ(V )

dT̃

T̃
C̃v(T̃ ) , (58)

e(V, T ) = e(V, T0) + θ(V )
∫ T/θ(V )

T0/θ(V )
dT̃ C̃v(T̃ ) , (59)

P (V, T ) = P (V, T0) +
g(V )

V

[
e− e(V, T0)

]
+

Γ(V, T0)− g(V )

V
CV (V, T0) (T − T0) .

(60)

where

S(V, T0) = S0 +
∫ V

V0

dV ′ Γ(V ′, T0)

V ′ CV (V ′, T0) , (61)

e(V, T0) = e0 −
∫ V

V0

dV ′
[
P (V ′, T0)−

Γ(V ′, T0)

V ′ CV (V ′, T0) T0

]
. (62)

It is noteworthy that for fixed V , the pressure is linear in both e and T .
This is somewhere between a Mie-Grüneisen model of a solid for which the
pressure is linear in e, and an ideal gas for which the pressure is linear in T .

3.1 Limiting case of two temperature scales

Another class of models in which Γ is a function of both V and T can be
formulated in terms of a specific heat that is a function of several scaled-
temperature variables; see for example Menikoff [2007]. This is suited to a
molecular crystal, for which the temperature scales are related to the optical
phonon frequencies. It can also be used to derive the form for Γ(V, T ) in
Eq. (55).
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For two temperature scales the specific heat and the Grüneisen coefficient
can be expressed as (see for example Menikoff [2007])

CV (V, T ) = C̃v1

(
T/θ1(V )

)
+ C̃v2

(
T/θ2(V )

)
, (63a)

Γ(V, T ) =
C̃v1

(
T/θ1(V )

)
Γ1(V ) + C̃v2

(
T/θ2(V )

)
Γ2(V )

CV (V, T )
, (63b)

where Γi(V ) = −d ln(θi)/d ln(V ). Consider the high temperature limit of the
second temperature scale; i.e., T � θ2 and hence C̃v2 → constant. Then the
Grüneisen coefficient reduce to

Γ(V, T ) =
CV 1(V, T ) Γ1(V ) + CV 2 Γ2(V )

CV 1(V, T ) + CV 2

. (64)

Moreover, CV (V, T ) = C̃v1

(
T/θ1(V )

)
+CV 2 reduces to a function of a single-

temperature scale.

Equation (64) can be re-expressed as

Γ(V, T ) CV (V, T ) = Γ1(V ) CV 1(V, T ) + Γ2(V ) CV 2 ,

Γ(V, T ) CV (V, T ) = Γ1(V )
[
CV (V, T )− CV 2

]
+ Γ2(V ) CV 2 ,[

Γ(V, T )− Γ1(V )
]
CV (V, T ) =

[
Γ2(V )− Γ1(V )

]
CV 2 .

Since the right hand side of the last equation is independent of T ,[
Γ(V, T )− Γ1(V )

]
CV (V, T ) =

[
Γ(V, T0)− Γ1(V )

]
CV (V, T0) . (65)

With g(V ) = Γ1(V ), this equation is the same as Eq. (55).

Thus, the specific heat a function of a single-temperature scale and the
Grüneisen coefficient a function of both V and T is equivalent to having
the specific heat a function of two-temperature scales when the temperature
is much higher than one of the temperature scales. Furthermore, if C̃v1(T̃ )
is monotonically increasing and Γ1(V ) < Γ2(V ) then Γ(V, T ) monotonically
decreases as T increases for fixed V .
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